First Running! Deep learning to CFD

This is our first apply ConvLSTM to CFD successfully! although the case is simple and under control of lots of factors. The ground factor is generated by Openfoam, and the custom model is predNet from coxlab. We trained three models in this time.

1.Training: use Nth frame to predict (N+1)th frame
Prediction: use 1-10th frame to predict 2-11th frame, then combined 11th frame in the predicted output with 1-10th frame. With new input(2-10th are ground truth, 11th is predicted), we can keep predicting 3-12th frame. In this experience, we predict the frames until 20th where sliding window = 1 frame. ( only first few frame are good, since we use the predicting frames to do the prediction)


2.Training: Nth frame to predict (N+10)th frame
Prediction: use 1-10 frame to predict 11-20 frame, no sliding window. ( this is very good since all input are ground truth)


3.Training: use Nth frame to predict (N+1)th frame
Prediction: use one frame to predict next frame, like driving prediction (animation has a little problem. right side is prediction, left side is ground truth)


Convolutional LSTM

For some reason, there is a request to predict video frames. We need that video is a combination of spatial and temporal dimensions. FCN and LSTM are good for them respectively. But for both of them, we need to use ConvLSTM. Since I just start to learn it, so I write down some of notes for good understanding.

1.First thing first, let’s see what LSTM looks like:


From left to right, we can see forget gate, input gate, input modulation gate and output gate. On the top side is memory pipe. It simulates the manner that human remember things. For more information, how the LSTM works please click here.
In keras, there are already three kinds of RNN: simpleRNN, LSTM and GRU. They are all easy to use.

2. What is ConvLSTM

Since LSTM is not good for spatial vector as input, which is only one dimension, they created ConvLSTM to allowed multidimensional data coming with convolutional operations in each gate.


We can find the basic formulas are as same as LSTM, they just use convolutional operations instead of one dimension for input, previous output and memory. Keras needs a new component which called ConvLSTM2D to wrap this ConvLSTM.

3. Where we use it?

As I said in the beginning, it is used for prediction with time and space. The already done in academic inculds: predict precipitation, video frame prediction, some physic movement activities. You can find more in my reference.

1. the bounce ball.
2. weather forecast.
3. some video prediction.

Deprecated: preg_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in /home/jietao/jie-tao/wp-content/themes/zacklive/library/zacklive.php on line 283