Raspberry PI Security

Lots of ready-to-use opensource project can be found on internet for raspberry PI object detection. Most of them can do very well to motion detection or object classification. I am thinking how to merge them together to make a practical security system that can help all of us to make our home safety. Since It is open source, I will share my design, source code and project milestone. ( mostly to push myself to finish it eventually 🙂

Design:

  1. start camera to capture each frame
  2. save the first frame as reference. and this reference frame will be replaced every 5 mins when there is no movement detected.
  3. continuously compare the current frame with the reference frame.
  4. if any movement detected, draw some interesting areas.
  5. loop these interesting areas, if its size out of threshold, move it to next DNN network.
  6. use DNN network to classify the object.
  7. if object is human, trigger dedicated process “Event process”. includes, recording video, send notification and make speaker noise.
  8. loop to the next frame.

Milestone:

Oct 10th-15th: finish basic function to detect movement, recording video and send mail.

Oct 16th-22th: add DNN network

Oct 22th-30th: add speaker and integration test.

Potential update:

  • GPU accelerate on Cuda device
  • GUI
  • restful API

Source:

https://github.com/neoaksa/raspiberry-security

Demo(till Oct 15th):

Reference:

Deep learning: How OpenCV’s blobFromImage works. https://www.pyimagesearch.com/2017/11/06/deep-learning-opencvs-blobfromimage-works/

Raspberry Pi: Deep learning object detection with OpenCV. https://www.pyimagesearch.com/2017/10/16/raspberry-pi-deep-learning-object-detection-with-opencv/

how to install opencv on the raspberry pi 3 Model b+ (with camera) https://pysource.com/2018/10/31/raspberry-pi-3-and-opencv-3-installation-tutorial/

Home surveillance and motion detection with the Raspberry Pi, Python, OpenCV, and Dropbox. https://www.pyimagesearch.com/2015/06/01/home-surveillance-and-motion-detection-with-the-raspberry-pi-python-and-opencv/

Types of Convolution(Translation)

For most of us who learned CNN, we already knew the convolutional operation is used for feature extraction in the spatial relationship. Compared with the full connection NN, it is good for weights sharing and translation invariant. There are many different convolutions. Recently, I found a very good article which summarized this topic. I translated it to English combined with my understanding. If you want to read the original one, you can go here.

1. Standard Convolution

1.1 Single channel

img

It’s element-wise multiply then sum together. The Convolutional filter moves forward each element in the picture. Here we set padding = 0, stride = 1. This is very useful for the gray picture.

img

1.2 multi channels

img

For the color pictures, they are made of 3 layers: Red, Green and Yellow. we create a 333 convolution which contains 3 convolutional kernels. Then we sum the three results togher to one channel 2D array.

img

Read More